入門指南
安裝
我們建議使用 Miniconda 來管理您的 Python 版本和環境。
- 步驟 1:Python 環境
在您的機器上安裝 miniconda。
Windows:安裝完成後,從開始選單中啟動 Anaconda Prompt。macOS/Linux:安裝完成後,啟動一個新的 shell 視窗程序。為 Qualcomm® AI Hub 設置環境:
conda create python=3.10 -n qai_hub conda activate qai_hub
警告
如果這些步驟中的任何一個因 SSL: CERTIFICATE_VERIFY_FAILED
錯誤而失敗,則表示您已安裝了 SSL 攔截和流量檢查工具。請向您的 IT 部門詢問如何為 Python pip
和 Python Requests
庫設置憑證的說明。他們應該會提供一個新的憑證文件。在創建環境之前,您還需要將此憑證添加到 Miniconda。這可以通過 conda config --set ssl_verify <path to certificate> 完成。
- 步驟 2:安裝 Python 客戶端
備註
Windows for ARM:由於缺乏對相關程式庫的支持,AI Hub 目前不支持使用原生 ARM Python。當 Python 生態系統趕上 ARM Windows 時,請安裝 x64 版本的 Python(通過 模擬 來實現)。我們推薦從 Python 下載頁面page 安裝 Python 3.10 "64-bit"。
pip3 install qai-hub
- 步驟 3:登錄
前往 Qualcomm® AI Hub 並使用您的 Qualcomm ID 登錄以查看您創建的作業信息。
登錄後,導航到 Account -> Settings -> API Token。這應該會提供一個 API Token,您可以用來配置您的客戶端。
- 步驟 4:配置 API 令牌
接下來,使用以下命令在您的終端中配置客戶端的 API token:
qai-hub configure --api_token INSERT_API_TOKEN
您可以通過獲取可用設備列表來檢查您的 API Token是否正確安裝。為此,您可以在 Python 終端中輸入以下內容:
import qai_hub as hub hub.get_devices()
您現在已準備好在 Qualcomm AI Hub 上提交作業。如果遇到任何問題,請 聯繫我們。隨意嘗試以下示例,在所需設備上運行分析文件作業。
快速示例 (PyTorch)
設置好您的 Qualcomm® AI Hub 環境後,下一步是提交配置文件作業。首先,安裝此示例的相關程式庫:
pip3 install "qai-hub[torch]"
警告
如果任何代碼因 API 身份驗證錯誤而失敗,則表示您沒有安裝有效的 API Token。請參閱 安裝 了解如何設置。
提交對您選擇的設備類型上的 MobileNet v2 網絡的分析。您可以使用上面列表中的任何設備來指定不同於以下選項的設備。
移動設備
import numpy as np
import requests
import torch
from PIL import Image
from torchvision.models import mobilenet_v2
import qai_hub as hub
# Using pre-trained MobileNet
torch_model = mobilenet_v2(pretrained=True)
torch_model.eval()
# Step 1: Trace model
input_shape = (1, 3, 224, 224)
example_input = torch.rand(input_shape)
traced_torch_model = torch.jit.trace(torch_model, example_input)
# Step 2: Compile model
compile_job = hub.submit_compile_job(
model=traced_torch_model,
device=hub.Device("Samsung Galaxy S24 (Family)"),
input_specs=dict(image=input_shape),
options="--target_runtime tflite",
)
assert isinstance(compile_job, hub.CompileJob)
# Step 3: Profile on cloud-hosted device
target_model = compile_job.get_target_model()
assert isinstance(target_model, hub.Model)
profile_job = hub.submit_profile_job(
model=target_model,
device=hub.Device("Samsung Galaxy S24 (Family)"),
)
assert isinstance(profile_job, hub.ProfileJob)
# Step 4: Run inference on cloud-hosted device
sample_image_url = (
"https://qaihub-public-assets.s3.us-west-2.amazonaws.com/apidoc/input_image1.jpg"
)
response = requests.get(sample_image_url, stream=True)
response.raw.decode_content = True
image = Image.open(response.raw).resize((224, 224))
input_array = np.expand_dims(
np.transpose(np.array(image, dtype=np.float32) / 255.0, (2, 0, 1)), axis=0
)
# Run inference using the on-device model on the input image
inference_job = hub.submit_inference_job(
model=target_model,
device=hub.Device("Samsung Galaxy S24 (Family)"),
inputs=dict(image=[input_array]),
)
assert isinstance(inference_job, hub.InferenceJob)
on_device_output = inference_job.download_output_data()
assert isinstance(on_device_output, dict)
# Step 5: Post-processing the on-device output
output_name = list(on_device_output.keys())[0]
out = on_device_output[output_name][0]
on_device_probabilities = np.exp(out) / np.sum(np.exp(out), axis=1)
# Read the class labels for imagenet
sample_classes = "https://qaihub-public-assets.s3.us-west-2.amazonaws.com/apidoc/imagenet_classes.txt"
response = requests.get(sample_classes, stream=True)
response.raw.decode_content = True
categories = [str(s.strip()) for s in response.raw]
# Print top five predictions for the on-device model
print("Top-5 On-Device predictions:")
top5_classes = np.argsort(on_device_probabilities[0], axis=0)[-5:]
for c in reversed(top5_classes):
print(f"{c} {categories[c]:20s} {on_device_probabilities[0][c]:>6.1%}")
# Step 6: Download model
target_model = compile_job.get_target_model()
assert isinstance(target_model, hub.Model)
target_model.download("mobilenet_v2.tflite")
IOT
import numpy as np
import requests
import torch
from PIL import Image
from torchvision.models import mobilenet_v2
import qai_hub as hub
# Using pre-trained MobileNet
torch_model = mobilenet_v2(pretrained=True)
torch_model.eval()
# Step 1: Trace model
input_shape = (1, 3, 224, 224)
example_input = torch.rand(input_shape)
traced_torch_model = torch.jit.trace(torch_model, example_input)
# Step 2: Compile model
compile_job = hub.submit_compile_job(
model=traced_torch_model,
device=hub.Device("RB3 Gen 2 (Proxy)"),
input_specs=dict(image=input_shape),
options="--target_runtime tflite",
)
assert isinstance(compile_job, hub.CompileJob)
# Step 3: Profile on cloud-hosted device
target_model = compile_job.get_target_model()
assert isinstance(target_model, hub.Model)
profile_job = hub.submit_profile_job(
model=target_model,
device=hub.Device("RB3 Gen 2 (Proxy)"),
)
assert isinstance(profile_job, hub.ProfileJob)
# Step 4: Run inference on cloud-hosted device
sample_image_url = (
"https://qaihub-public-assets.s3.us-west-2.amazonaws.com/apidoc/input_image1.jpg"
)
response = requests.get(sample_image_url, stream=True)
response.raw.decode_content = True
image = Image.open(response.raw).resize((224, 224))
input_array = np.expand_dims(
np.transpose(np.array(image, dtype=np.float32) / 255.0, (2, 0, 1)), axis=0
)
# Run inference using the on-device model on the input image
inference_job = hub.submit_inference_job(
model=target_model,
device=hub.Device("RB3 Gen 2 (Proxy)"),
inputs=dict(image=[input_array]),
)
assert isinstance(inference_job, hub.InferenceJob)
on_device_output = inference_job.download_output_data()
assert isinstance(on_device_output, dict)
# Step 5: Post-processing the on-device output
output_name = list(on_device_output.keys())[0]
out = on_device_output[output_name][0]
on_device_probabilities = np.exp(out) / np.sum(np.exp(out), axis=1)
# Read the class labels for imagenet
sample_classes = "https://qaihub-public-assets.s3.us-west-2.amazonaws.com/apidoc/imagenet_classes.txt"
response = requests.get(sample_classes, stream=True)
response.raw.decode_content = True
categories = [str(s.strip()) for s in response.raw]
# Print top five predictions for the on-device model
print("Top-5 On-Device predictions:")
top5_classes = np.argsort(on_device_probabilities[0], axis=0)[-5:]
for c in reversed(top5_classes):
print(f"{c} {categories[c]:20s} {on_device_probabilities[0][c]:>6.1%}")
# Step 6: Download model
target_model = compile_job.get_target_model()
assert isinstance(target_model, hub.Model)
target_model.download("mobilenet_v2.tflite")
計算設備
import numpy as np
import requests
import torch
from PIL import Image
from torchvision.models import mobilenet_v2
import qai_hub as hub
# Using pre-trained MobileNet
torch_model = mobilenet_v2(pretrained=True)
torch_model.eval()
# Step 1: Trace model
input_shape = (1, 3, 224, 224)
example_input = torch.rand(input_shape)
traced_torch_model = torch.jit.trace(torch_model, example_input)
# Step 2: Compile model
compile_job = hub.submit_compile_job(
model=traced_torch_model,
device=hub.Device("Snapdragon X Elite CRD"),
input_specs=dict(image=input_shape),
options="--target_runtime onnx",
)
assert isinstance(compile_job, hub.CompileJob)
# Step 3: Profile on cloud-hosted device
target_model = compile_job.get_target_model()
assert isinstance(target_model, hub.Model)
profile_job = hub.submit_profile_job(
model=target_model,
device=hub.Device("Snapdragon X Elite CRD"),
)
assert isinstance(profile_job, hub.ProfileJob)
# Step 4: Run inference on cloud-hosted device
sample_image_url = (
"https://qaihub-public-assets.s3.us-west-2.amazonaws.com/apidoc/input_image1.jpg"
)
response = requests.get(sample_image_url, stream=True)
response.raw.decode_content = True
image = Image.open(response.raw).resize((224, 224))
input_array = np.expand_dims(
np.transpose(np.array(image, dtype=np.float32) / 255.0, (2, 0, 1)), axis=0
)
# Run inference using the on-device model on the input image
inference_job = hub.submit_inference_job(
model=target_model,
device=hub.Device("Snapdragon X Elite CRD"),
inputs=dict(image=[input_array]),
)
assert isinstance(inference_job, hub.InferenceJob)
on_device_output = inference_job.download_output_data()
assert isinstance(on_device_output, dict)
# Step 5: Post-processing the on-device output
output_name = list(on_device_output.keys())[0]
out = on_device_output[output_name][0]
on_device_probabilities = np.exp(out) / np.sum(np.exp(out), axis=1)
# Read the class labels for imagenet
sample_classes = "https://qaihub-public-assets.s3.us-west-2.amazonaws.com/apidoc/imagenet_classes.txt"
response = requests.get(sample_classes, stream=True)
response.raw.decode_content = True
categories = [str(s.strip()) for s in response.raw]
# Print top five predictions for the on-device model
print("Top-5 On-Device predictions:")
top5_classes = np.argsort(on_device_probabilities[0], axis=0)[-5:]
for c in reversed(top5_classes):
print(f"{c} {categories[c]:20s} {on_device_probabilities[0][c]:>6.1%}")
# Step 6: Download model
target_model = compile_job.get_target_model()
assert isinstance(target_model, hub.Model)
target_model.download("mobilenet_v2.onnx")
汽車設備
import numpy as np
import requests
import torch
from PIL import Image
from torchvision.models import mobilenet_v2
import qai_hub as hub
# Using pre-trained MobileNet
torch_model = mobilenet_v2(pretrained=True)
torch_model.eval()
# Step 1: Trace model
input_shape = (1, 3, 224, 224)
example_input = torch.rand(input_shape)
traced_torch_model = torch.jit.trace(torch_model, example_input)
# Step 2: Compile model
compile_job = hub.submit_compile_job(
model=traced_torch_model,
device=hub.Device("SA8650 (Proxy)"),
input_specs=dict(image=input_shape),
options="--target_runtime qnn_lib_aarch64_android",
)
assert isinstance(compile_job, hub.CompileJob)
# Step 3: Profile on cloud-hosted device
target_model = compile_job.get_target_model()
assert isinstance(target_model, hub.Model)
profile_job = hub.submit_profile_job(
model=target_model,
device=hub.Device("SA8650 (Proxy)"),
)
assert isinstance(profile_job, hub.ProfileJob)
# Step 4: Run inference on cloud-hosted device
sample_image_url = (
"https://qaihub-public-assets.s3.us-west-2.amazonaws.com/apidoc/input_image1.jpg"
)
response = requests.get(sample_image_url, stream=True)
response.raw.decode_content = True
image = Image.open(response.raw).resize((224, 224))
input_array = np.expand_dims(
np.transpose(np.array(image, dtype=np.float32) / 255.0, (2, 0, 1)), axis=0
)
# Run inference using the on-device model on the input image
inference_job = hub.submit_inference_job(
model=target_model,
device=hub.Device("SA8650 (Proxy)"),
inputs=dict(image=[input_array]),
)
assert isinstance(inference_job, hub.InferenceJob)
on_device_output = inference_job.download_output_data()
assert isinstance(on_device_output, dict)
# Step 5: Post-processing the on-device output
output_name = list(on_device_output.keys())[0]
out = on_device_output[output_name][0]
on_device_probabilities = np.exp(out) / np.sum(np.exp(out), axis=1)
# Read the class labels for imagenet
sample_classes = "https://qaihub-public-assets.s3.us-west-2.amazonaws.com/apidoc/imagenet_classes.txt"
response = requests.get(sample_classes, stream=True)
response.raw.decode_content = True
categories = [str(s.strip()) for s in response.raw]
# Print top five predictions for the on-device model
print("Top-5 On-Device predictions:")
top5_classes = np.argsort(on_device_probabilities[0], axis=0)[-5:]
for c in reversed(top5_classes):
print(f"{c} {categories[c]:20s} {on_device_probabilities[0][c]:>6.1%}")
# Step 6: Download model
target_model = compile_job.get_target_model()
assert isinstance(target_model, hub.Model)
target_model.download("mobilenet_v2.so")
這將提交一個編譯作業,然後提交一個分析文件作業,印出兩個作業的 URL。最後,代碼在一些示例數據上執行推理作業。在 /jobs/ 查看您所有的作業。
您可以透過程式查詢作業的狀態:
status = profile_job.get_status()
print(status)
您可以使用以下代碼訪問作業結果。主要有三個部分
分析文件: JSON 格式的分析文件結果。
目標模型: 已優化的模型,準備部署。
結果: 包含作業所有工件(包括日誌)的文件夾。
請注意,這些是同步API ,調用後會等待作業完成:
下載分析結果(JSON 格式,同步呼叫)
profile = profile_job.download_profile()
print(profile)
下載最佳化模型(同步呼叫)
compile_job.model.download("model_filename")
將結果下載至目前目錄(同步呼叫)
profile_job.download_results(".")
欲了解更多信息,請繼續參閱 分析模型 或參考 API documentation。